M1.
(a) 28
(b) 6

M2.

$$
\begin{aligned}
& 850 \times 1.18 \text { or } 1003 \\
& \text { oe } \\
&(990+15) \div 1.18 \\
& \text { or } 990 \div 1.18 \text { or } 838.9(\ldots)
\end{aligned}
$$

1003 and 1005
or 2
851.(...) or 852
or 1.(...)

Laura and 1003 and 1005
or Laura and 2
or UK and 1003 and 1005
or UK and 2
or Laura and 851.(...) or 852
or Laura and 1.(...)
or UK and 851.(...) or 852
or UK and 1.(...)
Strand (iii) decision to match their calculation
ft their comparison of values with M1 scored, both values must be in the same currency

Q1ft

Additional Guidance

Accept name, country or price (e.g. the (£)850 saddle) for final answer
$990 \div 1.18=838 .(\ldots)$, Steve (or Holland)
$990 \div 1.18=838 .(\ldots), 15 \div 1.18=12 .(\ldots), 838+12=850$, they both cost the same

Laura with no valid working
For the Q mark, follow through their comparison of values with M1 scored, but both values must be in the same currency and one of the values used in the comparison must be from the M1 that was awarded.

M3.3 and 7.5 seen
or $4: 1$ or $1: 4$ seen or implied
$\pi \times 6 \times 15$ or 90π or $[282,283]$
or $\pi \times 3 \times 7.5$ or 22.5π or [70, 71]
oe
$\pi \times 6 \times 15-\pi \times 3 \times 7.5$
or $90 \pi-22.5 \pi$
or $\pi \times 6 \times 15 \times \frac{3}{4}$
oe
[211.8,212.2] or 67.5π or $\frac{135}{2} \pi$ lgnore fw

$$
\begin{gathered}
\frac{16}{64} \text { or } \frac{12}{40} \text { or } 4: 1 \text { or } 4: 1.2 \text { or } 3.3(3 \ldots): 1 \\
\text { oe }
\end{gathered}
$$

Comparing equivalents
0.25 and 0.3
or $25(\%)$ and 30 (\%)
or $\frac{10}{40}$ and $\frac{12}{40}$
or $4: 1$ and $4: 1.2$
or $4: 1$ and $3.3(3 \ldots): 1$
with at least 1 correct

$$
\text { oe } E g \frac{80}{320} \text { and } \frac{96}{320}
$$

Both correct and Wet track

M5.

$$
\begin{aligned}
150 \div 6 \text { or } 25 & \text { (1 person) } \\
& 150 \times 2 \text { or } 300 \text { (12 people) } \\
& \text { or } \\
& \frac{150}{2} \text { or } 75 \quad \text { (3 people) }
\end{aligned}
$$

their $300+$ their 75
or
their 75×5

Alternative method

$15 \div 6$ or 2.5
their 2.5×150

375

M6.(a) $300 \div 4$ or 75
or 300×1.5
2 cakes $=300 \div 2$ or 2 cakes $=150$
or
12 cakes $=300 \times 3$ or 12 cakes $=900$
oe
any correct scaling

450
(b) $\quad(1.5 \mathrm{~kg}=) 1500(\mathrm{~g})$
or $300 \mathrm{~g}=0.3 \mathrm{~kg}$ or $150 \mathrm{~g}=0.15 \mathrm{~kg}$
seen or implied
their $1500 \div$ their 75
or $6(+) 6(+) 6(+) 2$
or 5×4 or $4(+) 4(+) 4(+) 4(+) 4$
oe

$$
\text { SC2 } 14 \text { cakes from } 1050 \mathrm{~g}
$$

Alternative method

$$
\begin{gathered}
(1.5 \mathrm{~kg}=) 1500(\mathrm{~g}) \\
\text { or } 300 \mathrm{~g}=0.3 \mathrm{~kg} \text { or } 150 \mathrm{~g}=0.15 \mathrm{~kg} \\
\text { seen or implied }
\end{gathered}
$$

Build up method to total number of cakes from their 1500 with one error build up values if correct:
4 cakes $=300$ (g)
8 cakes $=600$ (g)
12 cakes $=900$ (g) 16 cakes $=1200$ (g)

20
SC2 14 cakes from 1050g

Additional Guidance

1500 (g)
4 cakes $=300(\mathrm{~g})$
8 cakes $=600(\mathrm{~g})$
16 cakes $=900(\mathrm{~g})$ (one error)
24 cakes $=1500(\mathrm{~g})$
Answer 24 cakes is B1M1A0
$1000(\mathrm{~g})$ uses incorrect total of flour (misread)
4 cakes $=300(\mathrm{~g})$
8 cakes $=600(\mathrm{~g})$
12 cakes $=900$ (g)
Answer 12 cakes (one error - should be 13 cakes) is B0M1A0

M7.(a) 600
(b) $900-860$ or $860+40=900$ or 40
or
$0.9-0.86$ or $0.86+0.04=0.9$ or 0.04
Condone 860-900
oe
Condone incorrect or missing units

40 grams or 0.04 kg
SC1 940 g or 0.94 kg

Additional Guidance

If you see $860+40=900$ but then further work to build up to eg 1800, mark the whole method and the only mark available is the SC1.
Once 40 g or 0.04 kg seen, ignore any attempt to change units.
40 g seen in working but then 40 on ans line - condone. M1A1

M8.Any valid conversion seen, eg
$10(\mathrm{~cm})=4$ (inches)
$25(\mathrm{~cm})=10$ (inches)
$30(\mathrm{~cm})=12$ (inches)
Numbers may be marked next to graph
$150(\mathrm{~cm})=60$ (inches)
or
75 (inches) $=[185,190](\mathrm{cm})$
or
$75: 150=1: 2$ and inch $: c m=1: 2.5$
or

$$
\begin{aligned}
& \text { eg } 150 \div 30=5 \text { and } 75 \div 12=6 .(\ldots) \\
& \\
& \quad \text { May use any value [60, 75] (inches) correctly converted to } \\
& \quad \text { cm to show it is not enough } \\
& \\
& \text { eg } 70 \text { inches }=175 \mathrm{~cm}
\end{aligned}
$$

Correct conclusion with appropriate values stated
eg No and 60
or No and [185, 190]
or No and each inch needs 2.5 cm and there are only 2
oe
Strand (iii) Allow Q1ft if M1A0 awarded, an arithmetic error made in calculating conversion of 150 cm or 75 inches and a correct conclusion reached for their values. Must be using correct conversions throughout

Alternative method

Divides 150 and 75 by a common factor of at least 5
eg $150 \div 10=15$ and $75 \div 10=7.5$

Reads off accurately for one of their values eg $15 \mathrm{~cm}=6$ inches
or
Draws lines across and down accurately for both values

Correct conclusion comparing their scaled value and graph value or comparing their pairs of lines

Strand (iii) Allow Q1ft if M1A0 awarded, an error made in reading value and correct conclusion reached for their values

Additional Guidance

Note that the list for Q1 are only examples, there are many other possible valid conclusions
eg1 70 inches $=175 \mathrm{~cm}$ so 150 cm is not enough
eg2 $150 \div 30=5$ and $75 \div 12=6$.(...) so No because need 6 times and only 5 . They must be using a correct conversion for all parts of their answer to qualify for the Q mark. Allow arithmetic errors only.

M9. $\frac{42}{300}$ or $\frac{33}{250}$ or $\frac{48}{400}$

$$
\begin{aligned}
& \text { oe } \\
& \frac{258}{300} \text { or } \frac{227}{250} \text { or } \frac{352}{400} \\
& 300 \div 42 \text { or } 250 \div 33 \text { or } 400 \div 48
\end{aligned}
$$

0.14 and $0.13(2)$ and 0.12
or
0.86 and 0.868 or 0.87 and 0.88

14 and 13.(2) and 12
86 and 86.8 or 87 and 88 (non-faulty)
7.1(428) and 7.5(757) or 7.6 and 8.(3333)
0.14 or A or 0.86

Strand (iii)
Correct conclusion from their three answers with at least one correct

Alternative Method

Correct scaling for one pair
eg
840 and 792 (out of 6000) A and B
7 and 6.6 (out of 50) A and B

All three scaled for comparison
$e g$
840 and 792 and $720 A, B$ and C
7 and 6.6 and $6 A, B$ and C
792 and 720 with 7 and 6.6 (B and C with A
and B)

A oe
Strand (iii)
Correct conclusion from their three answers with at least one (pair) correct

M10.(a) $5.99 \div 8$ or $599 \div 8$
Condone $6 \div 8$ or $600 \div 8$
$74.875(p)$ or $74(p)$ or $75(p)$
Accept $£ 0.74$ or $£ 0.75$ or $£ 0.74875$
Allow any correct rounding or truncation giving an answer to 2 or more s.f.
(b) $3.99 \div 6$
or $399 \div 6$ oe
Scaling method used with $£ 6$
or $\frac{6}{8} \times 5.99$
eg 8 cost £ $6,4 \operatorname{cost} £ 3,2 \operatorname{cost} £ 1.506 \operatorname{cost} £ 4.50$
or $6 \times$ their 75
$£ 3.99$ + their $£ 1.50$
£5.99-their $£ 1.50$
or $6 \times$ their 0.75

> (£) 0.665 or $66(.5)(\mathrm{p})$ or $67(\mathrm{p})$
> 6 pack is better value
> or 4.4925 or 450 p or $£ 4.50$
> $7 p, 8 p$ or $9 p$ cheaper per battery
> and better value (Yes)
> $£ 5.49$ or $£ 4.49$
> Comparison must be with consistent units ft their (a)

Alternative method

$$
8 \div 5.99 \text { or } 8 \div 599
$$

May be seen in (a)
and $6 \div 3.99$ or $6 \div 399$
6 costs $£ 2$ less (so extras are $£ 1$ each)
Compares cost of 24 batteries
$£ 5.99 \times 3$ and $£ 3.99 \times 4$
1.3(3) and 1.5(0)
£1 compared with 75p
and 6 batteries better value (Yes)
£17.97 and £15.96
and 6 batteries better value

M11.
$112 \div 210$

$$
112 \div 210 \times 100
$$

$132 \div 240$

$$
132 \div 240 \times 100
$$

$0.53 \ldots$ and 0.55
53... (\%) and 55(\%)

Their $0.53 \ldots$ and their 0.55 and Year 11
Their 53....(\%) and their 55(\%) and Year 11
Strand (iii)
M2 and correct decision for their decimals or percentages

Alternative 1

$210 \div 112$
$210 \div 112 \times 100$
$240 \div 132$
$240 \div 132 \times 100$

```
1.875 and \(1.8(18 \ldots)\)
187.5(\%) and 181.8...(\%)
```

Their 1.875 and their $1.8(18 \ldots)$ and Year 11
Their 187.5(\%) and their 181.8...(\%) and Year 11
Strand (iii)
M2 and correct decision for their decimals or percentages

Alternative 2

(210-112) $\div 210$

$$
(210-112) \div 210 \times 100
$$

$(240-132) \div 240$

$$
(240-132) \div 240 \times 100
$$

0.46.....(or 0.47) and 0.45
46....(\%) (or 47(\%)) and 45(\%)

Their $0.46 \ldots .$. (or 0.47) and their 0.45 and Year 11
Their 46....(\%) (or 47(\%)) and their 45(\%) and Year 11
Strand (iii)
M2 and correct decision for their decimals or percentages

Alternative 3

$210 \div(210-112)$

$$
210 \div(210-112) \times 100
$$

$$
240 \div(240-132)
$$

$$
240 \div(240-132) \times 100
$$

```
2.1(4...) and 2.2(2...)
    21.4...(%) and 22.2...(%)
```

Their 2.1(4...) and their 2.2(2...) and Year 11
Their 214.(...) (\%) and their 222.(...) (\%) and Year 11
Strand (iii)
M2 and correct decision for their decimals or percentages

Alternative 4

$\frac{112}{210}$ and $\frac{132}{240}$

Equates denominators with at least one correct numerator
$\frac{32}{60}$ and $\frac{33}{60}$

$$
\text { oe } \frac{16}{30} \text { and } \frac{16.5}{30}
$$

A1

Their $\frac{210}{112}$ and their $\frac{240}{132}$ and Year 11
oe
Strand (iii)
M2 and correct decision for their fractions

Alternative 5

$112: 210$ and $132: 240$

Equates one side of ratio with at least one correct on other side

$$
\begin{aligned}
& 1: \frac{210}{112} \text { and } 1: \frac{240}{132} \\
& \frac{112}{210}: 1 \text { and } \frac{132}{240}: 1 \text { oe }
\end{aligned}
$$

$16: 30$ and $16.5: 30$
oeA1
Their $16: 30$ and their $16.5: 30$ and Year 11
Strand (iii)M2 and correct decision for their ratiosQ1
Alternative 6
112: (210-112)and 132 : $(240-132)$
M1
$8: 7$ and $11: 9$M1
$72: 63$ and $77: 63$
oe
A1
Their 72 : 63 and their $77: 63$ and Year 11
Strand (iii)M2 and correct decision for their ratios
Q1
Alternative 7
210 : (210-112) and240: (240-132)M1
$15: 7$ and $20: 9$M1
$135: 63$ and $140: 63$
oe
A1
Their 135:63 and their 140:63 and Year 11
Strand (iii)
M2 and correct decision for their ratios

M12.

$$
\left.\begin{array}{l}
\frac{20}{40} \times 60 \quad(=30) \text { or } \\
\frac{20}{40} \times 120(=60) \text { or } \\
\frac{20}{40} \times 180(=90) \\
\\
\text { oe eg } 160 \div 2 \\
\text { eg } 260 \div 40(=1.5) \text { and their } 1.5 \times 20
\end{array}\right] \begin{array}{r}
\frac{15}{20} \times 60(=45) \text { or } \\
\frac{15}{20} \times 120(=90) \text { or } \\
\frac{15}{20} \times 180(=135) \\
\text { oe eg } 1180 \div 4 \times 3 \\
\text { eg } 260 \div 20(=3) \text { and their } 3 \times 15
\end{array}
$$

their $30+$ their 45
or
their $60+$ their 90
or
their 90 + their 135
dep on at least one M1
(Sugar) 75
(Butter) 150
(Flour) 225
All 3 correct
SC2 No working with two correct answers
SC1 No working with one correct answer

Alternative

$\frac{20}{40}$ and $\frac{15}{20}$
oe eg 0.5 and 0.75
their $\frac{20}{40}+$ their $\frac{15}{20}\left(=\frac{5}{4}\right)$
oe eg 1.25
their $\frac{5}{4} \times 60(=75)$ or
their ${ }^{\frac{5}{4}} \times 120(=150)$ or
their $\frac{5}{4} \times 180(=225)$
oe eg 1.25×60
(Sugar) 75
(Butter) 150
(Flour) 225
All 3 correct
SC2 No working with two correct answers
SC1 No working with one correct answer

M13. eg $4 \times \frac{1}{4}(l)=1(l)$

$$
\text { oe } 20 \div 4 \text { or } 5 \text { or } \frac{1}{5}
$$

4×4 or 16
oe their $5 \times \frac{1}{4}$

No and 16

$$
\text { oe eg No and } 1 \frac{1}{4}
$$

M14. Attempts to process one piece of information

$$
\begin{aligned}
& \text { eg } 2: 9 \text { or } 4: 16 \\
& 0.22 \ldots \text { or } 0.25 \\
& \frac{6}{27}=\frac{2}{9} \text { or } \frac{8}{32}=\frac{4}{16} \\
& \frac{6}{27} \times 100 \text { or } \frac{8}{32} \times 100 \\
& \frac{24}{108} \text { or } \frac{24}{96} \frac{192}{864} \text { or } \frac{216}{864} \\
& \text { or } 8 \text { goals in } 32 \text { games is } 1 \text { goal every } 4 \text { games } \\
& 4 \frac{1}{2} \text { or } 4 \\
& \text { oe }
\end{aligned}
$$

Writes both pieces of information in a form that allows for comparison

$$
\begin{aligned}
& \text { eg } 2: 9 \text { and } 2: 8 \\
& 0.22 \ldots \text { and } 0.25 \\
& (1: 4.5 \text { and } 1: 4 \text { are acceptable) } \\
& 4 \frac{1}{2} \text { and } 4 \\
& \frac{2}{9} \text { and } \frac{2}{8} \quad \frac{24}{108} \text { and } \frac{24}{96} \\
& \frac{8}{36} \text { and } \frac{9}{36} \\
& \frac{2}{864}
\end{aligned} \text { and } \frac{192}{864}
$$

Correct decision from their working
Strand (iii) Dependent on M1

M15. 600 and 50 and 200
B2 for any two of 600,50, 200
B1 for any one of 600,50, 200
or for sight of $\frac{2}{3}$ or $\frac{3}{2}$ oe, or for sight of 2:3 or 3:2 oe Accept 66\%,67\%,150\%
If no correct values seen,
B1 for any correct proportion
eg Potatoes $=3 \times$ stock
Potatoes $=12 \times$ carrots
Stock $=4 \times$ carrots
B3
[3]

M16.2

$$
\text { B2 for } 3 \text { or } 4 \text { correct }
$$

6
B1 for 1 or 2 correct
1
150
SC2 4, 12, 2, 300, 20
10
SC1 3 or 4 correct of 4, 12, 2, 300, 20
M17.(a) 64×2 or 0.64×2 oe
1.28
(b) 64×3 oe

$$
\text { or } 1.99 \div 3(\times 2)
$$

Attempt to compare equal quantities
or 64×6 and 1.99×2
(£) 1.92
Correct values for their comparison
or (£) $0.66(\ldots)$ or ($£) 1.32$ or ($£) 1.33$
or (£) 3.84 and ($£ 3.98$
Small
Strand (iii)
Correct conclusion for their values
Must compare equal quantities

